© 1995-2021 Компания «Инфосистемы Джет»
Плюсы анализа кассовых чеков в ритейле с помощью BI систем
Программное обеспечение

Наш опыт работы с компаниями из разных отраслей рынка показывает, что ритейлеры предъявляют к аналитике наиболее жесткие требования

19.08.2015

Посетителей: 404

Просмотров: 354

Время просмотра: 4 мин.

Анализ кассовых чеков магазина – что он может дать ритейлеру?

 

 

Наш опыт работы с компаниями из разных отраслей рынка показывает, что ритейлеры предъявляют к аналитике наиболее жесткие требования. Им необходимы ежедневная оперативная отчетность, отчеты по достаточности и оборачиваемости товаров, данные из систем Data Mining и др. Прибавьте к этому потребность в информационных панелях (Dashboards) для топ-менеджеров, предоставляющих агрегированные данные о состоянии бизнеса (информация о ежедневных продажах и т.д.). Для того чтобы обеспечить себя всей этой информацией, ритейлеру необходимо проводить качественную аналитику кассовых чеков. Имеются ввиду все чеки, собранные со всех магазинов в единый массив данных с кассового сервера. Кроме того, «в расчет» берутся дополнительные источники данных: справочники товаров/касс/кассиров, информация по дисконтным программам и счетчикам посетителей. Только анализ «вкупе» даст правильную картину состояния бизнеса.

 

Результатом анализа чеков является максимально детализированная отчетность в разрезе различных временных периодов: времени суток (утро/день/обед/после обеда/вечер), дня недели, выходного/рабочего дня и т.д. Деление на подобные промежутки может быть привязано к периодам, когда магазин предположительно посещают различные группы покупателей. Это позволяет оценить эффективность проведенных промо-акций и распродаж, сформировать поведенческую модель покупателя и определить основные тенденции развития магазина. Ключевые расчетные показатели подразумевают расчет:

  • выручки по чекам;
  • среднего чека – позволяет увидеть динамику покупательской способности;
  • количества чеков – показывает активность клиентов в различные временные периоды;
  • глубины чека (среднее количество товаров) – позволяет скорректировать будущие акции/промо/распродажи в зависимости от поведения клиентов;
  • суммы скидок – покажет результат акций/промо/распродаж.

 

Помимо расчета основных показателей, огромную роль играет правильная группировка чеков по сумме и количеству товаров. Она позволяет провести анализ их распределения, разработать решения по увеличению количества чеков с большей стоимостью, скорректировать ассортиментную и рекламную политику. Также важно построение динамики продаж и распределения чеков в различных разрезах (с разным количеством позиций по ценовым диапазонам, с различной суммой покупки в общем количестве чеков и др.).

 

Исходя из этих показателей, можно оценить, в каких ценовых сегментах покупатели совершают большие покупки, а в каких – ограниченные и случайные, а также провести правильную дифференциацию ценообразования и акционной политики, спрогнозировать будущие периоды спада и провести стимулирование продаж.

 

Немаловажно также учитывать человеческий фактор, а именно анализировать работу персонала ритейлера. В этом может помочь построение отчетов с группировкой по кассовым узлам, кассирам, кластерам магазинов. Выявив сильные и слабые группы, можно разработать мотивационные программы и KPI для каждой из них.

 

Рассмотрим пару примеров реализации анализа чеков из нашей практики.

 

Первый – это проект для крупного российского ритейлера (сектор товаров народного потребления). Каждый день в отчете «Анализ чеков» консолидируются данные с кассового сервера, из SAP, дополнительных Excel-таблиц из российских магазинов и кассового сервера, RMS-системы из магазинов в странах СНГ (итого 5 различных источников данных). Ежедневный объем чековых транзакций может достигать 5 млн строк. При этом время готовности внедренной BI-системы составляет менее 2 минут, отклик на сложные запросы занимает около минуты. В самом отчете более 40 возможных измерений и 30 показателей.

 

Второй пример – анализ чеков у продуктового ритейлера. Отличительными особенностями проекта были очень большой объем данных (50 млн строк в день) и высокие требования к производительности BI-системы. При этом набор показателей и измерений практически не отличается от предыдущего примера.

 

Дело техники

 

Отдельно стоит сказать о технологической составляющей процесса анализа чеков. Информация для построения вышеописанной аналитики, как правило, хранится в хранилище кассового сервера и в учетной системе компании. Таким образом, для построения отчетов необходимо консолидировать данные как минимум из 2 источников (на практике их больше). При этом объем данных кассового сервера компании Enterprise-сегмента может достигать нескольких миллиардов записей в месяц.

 

Процесс построения моделей анализа чеков можно представить следующим образом:

  1. выявление требований к отчетам, интервьюирование пользователей;
  2. определение источников данных (кассовый сервер, учетные системы, плановые показатели в excel-таблицах от пользователей и др.);
  3. выбор оптимальной BI-платформы;
  4. проектирование внутреннего хранилища выбранной системы;
  5. разработка скриптов процесса извлечения, трансформации данных и расчета некоторых показателей;
  6. разработка конечных отчетов, написание формул расчета показателей;
  7. проектирование UI (User Interface) конечного приложения;
  8. опытная эксплуатация приложения.

 

И здесь на помощь приходят современные программные средства Business Intelligence и технологии Online Analytical Processing (OLAP). Они позволяют консолидировать данные из разных источников и сохранять информацию в специальную оптимизированную базу данных с набором предрассчитанных показателей в различных разрезах. Ее структура представляет собой рассчитанные виртуальные кубы данных. Она позволяет сильно увеличить производительность работы системы (отклик, объем обрабатываемых данных, глубина детализации и т.д.).

 

Подобные технологические механизмы заложены в ряде представленных на данный момент на ИТ-рынке BI-платформ. Это значительно облегчает и ускоряет процесс анализа чеков. С другой стороны, сама разработка качественной отчетности анализа чеков занимает от 1 до 3 месяцев в зависимости от специфики и требований заказчика. Поэтому ждать быстрого и легкого внедрения в любом случае не стоит.

Уведомления об обновлении тем – в вашей почте

ETL – технология, сопутствующая любой BI-инициативе

Десятилетия прошли с тех пор, как ИТ-индустрия начала предпринимать первые шаги по построению систем, направленных на анализ данных для планирования дальнейшей деятельности компании и поддержки принятия управленческих решений.

Интервью с Андреем Педоренко, Директором Департамента информационных технологий ОАО «Альфастрахование»

BI or not BI: that is the question. Своим мнением по этому вопросу с редакцией Jet Info делится Андрей Педоренко, Директор Департамента информационных технологий ОАО «Альфастрахование».

Рука на пульсе, или АРМ руководителя

Вопрос, который Генеральный управляющий хотел обсудить с Джети, занимал его последние несколько месяцев

Отчитаться на раз

Современные банки вынуждены осуществлять свою деятельность в условиях постоянного жесткого прессинга со стороны других участников рынка. Конкуренция, сокращение числа потенциальных клиентов, постоянно меняющаяся внешняя ситуация требуют непрерывного управления деятельностью банка, принятия менеджментом своевременных тактических и стратегических решений, от которых зачастую зависит само существование организации.

Аналитическая информация без человеческого фактора

Рассматриваются варианты подготовки аналитической информации для руководства компании до и после внедрения BI-решения

Как изменится ритейл в 2020 году

Какие тренды характерны для отечественного ритейла, и как мировые гиганты справляются с вызовами рынка

«Системный интегратор внутри ритейлера нам не нужен»

Отвечает по ходу нашей беседы Сергей Кондарев, директор Департамента по информационным технологиям Группы компаний ...

«Многие используют технологии, которые помогают совершать покупки и при этом чувствовать себя в безопасности»

Новые паттерны поведения клиентов в 2020 г.? Какие факторы нужно учитывать при разработке касс самообслуживания? Как пандемия повлияла на продажи NCR?

Спасибо!
Вы подписались на обновления наших статей
Предложить
авторский материал





    Спасибо!
    Вы подписались на обновления наших статей
    Подписаться
    на тему







      Спасибо!
      Вы подписались на обновления наших статей
      Оформить
      подписку на журнал







        Спасибо!
        Вы подписались на обновления наших статей
        Оформить
        подписку на новости







          Спасибо!
          Вы подписались на обновления наших статей
          Задать вопрос
          редактору








            Оставить заявку

            Мы всегда рады ответить на любые Ваши вопросы

            * Обязательные поля для заполнения

            Спасибо!

            Благодарим за обращение. Ваша заявка принята

            Наш специалист свяжется с Вами в течение рабочего дня