Сайт находится в состоянии доработки. Извиняемся за неудобства.

x
© 1995-2019 Компания «Инфосистемы Джет» Разработано в Liqium
Сетевые решения Видеоаналитика: перспективы и реальные внедрения
Автор
Павел Романченко технический директор Центра инноваций компании «Инфосистемы Джет»
Статей: 7 Фото-факт: 26

127

0.

12

0

3

Сейчас мировой рынок видеоаналитики переживает период расцвета. Главная причина этого — снижение цен на комплектующие. Процессоры стали быстрее и дешевле, теперь их встраивают прямо в устройства, и на выходе мы получаем видеокамеры с интегрированной видеоаналитикой. Вместо аналоговых стали повсеместно использоваться цифровые видеокамеры, что повысило качество изображения. Кроме того, появились более производительные видеокарты и специализированные устройства — например, линейка «одноплатников» Jetson от NVIDIA. Сообщество open source разрабатывает большое количество библиотек для построения моделей машинного обучения, которые используются и для решения задач видеоаналитики.

Российский рынок идет с некоторым опозданием, но тем не менее тоже вступает в фазу зрелости. Речь идет уже не о единичных пилотных проектах, а о боевых внедрениях, которые приносят реальную бизнес-выгоду. Особенно популярны решения для охраны объектов, определения дефектов на производстве и сортировки продукции. Основные заказчики таких систем — промышленность и ритейл.

Направления использования видеоаналитики

  • Общественная безопасность. Еще несколько лет назад на видео можно было определить только сам факт движения человека в кадре. Теперь же система может понять, что именно он делает, и даже опознать его по походке или характерным движениям. Более того, сейчас системы видеоаналитики могут установить, насколько агрессивно ведут себя люди на улице и могут ли они представлять опасность для окружающих.
  • Контроль магазинов. Можно проанализировать, насколько работа кассира соответствует эталонному скрипту, оценить удовлетворенность покупателя, а также зафиксировать факт пустых полок или кражи товара.
  • Склад и логистика. Видеоаналитика поможет оптимизировать размещение товаров на складе, решение также фиксирует отгрузку и приемку. Кроме того, технология будет полезна для контроля соблюдения норм безопасности сотрудниками.
  • Умный город. Здесь у видеонаблюдения широкий пул возможностей — от определения теплопотерь в системах отопления (при помощи тепловизоров) до контроля пробок и анализа скоплений людей в общественных местах.
  • Производственные процессы. Технология позволяет определять качество сырья и продукции. Также ее можно использовать в области промышленной безопасности, оценивать эффективность работы сотрудников.

Гибридный подход

Наша практика показывает, что решение по видеоаналитике необходимо в той или иной степени кастомизировать под заказчика в 99,9% случаев. Классические алгоритмы видеоаналитики не справляются с распознаванием специфического поведения человека или необычных, редко встречающихся объектов. Зачастую для анализа происходящего в кадре нужно использовать методы машинного обучения.

 

В качестве примера кастомизации рассмотрим кейс по внедрению системы видеоаналитики в розничной сети. Коробочное решение не подойдет для всех торговых точек: везде разное освещение, планировка торговых залов, и это только часть отличий. Поэтому систему придется «докручивать». При этом стоимость кастомизации может стать препятствием на пути к внедрению, если решение по видеоаналитике должно «закрыть» нехарактерные для него задачи.

 

Будущее за гибридным подходом — построением комплексных систем, сочетающих в себе решения по видеоаналитике и другие специализированные технологии. К примеру, отследить путь человека по подсобным помещениям торгового центра или по производственным площадкам предприятия можно с помощью не только видеокамер, но и системы контроля и управления доступом. Также возможно комбинированное решение с отслеживанием по BLE-маякам (bluetooth low energy).

 

Наибольшую эффективность видеоаналитика показывает при интеграции с другими системами. Это могут быть логистическая система, CRM, СКУД и т.д. Подобные интеграционные проекты — это и есть наш «хлеб». Мы строим комплексные решения, которые одновременно опираются на технологии видеоаналитики и учитывают возможности других систем, работающих у заказчика.

Наш опыт

Пилот на целлюлозно-бумажном предприятии: «Промышленная безопасность»

 

Цель: сокращение количества несчастных случаев на производстве.

 

Зона пилота: цех длиной 300 м и шириной 40 м, в котором работают 20 сотрудников.

 

Первая часть внедренного нами решения — носимые устройства для сотрудников. На каску каждого специалиста мы установили устройство, отслеживающее, надел ли он необходимые средства индивидуальной защиты (в них вшиты Bluetooth-метки). Также устройство помогает определить положение человека в помещении с точностью до 20 см. Если работник находится в зоне, где ему быть не положено, начальник цеха или директор по технической безопасности сразу получает соответствующее оповещение.

 

Вторая часть решения — собственно система видеоаналитики. Мы установили в цехе видеокамеры, они помогают определять сотрудников, которые не надели отслеживающие устройства. Кроме того, камеры позволяют устанавливать людей, которые вообще не должны находиться в производственном помещении, в том числе потенциальных злоумышленников.

 

Немаловажно, что используемые нами решения универсальны и могут быть применимы к любому виду опасного производства.

Мы сотрудничаем с крупными разработчиками ПО для систем безопасности и видеонаблюдения — Macroscop, ITV, VisionLabs, Tevian, NTechLab, «Вокорд», IBM — и уже реализовали с ними несколько пилотов.

Пилот в сельскохозяйственной компании: «Эффективность работы сотрудников»

 

Цель: определение эффективности труда сотрудников.

 

Зона пилота: цех обвалки мяса.

 

У заказчика возникали сложности с адекватной оценкой труда обвальщиков — специалистов по отделению мяса от костей. Сложно было определить, кто сколько туш обработал, кто перевыполняет нормы, а кто малоэффективен.

 

Мы внедрили решение на базе видеоаналитики: видеокамера снимает рабочее место сотрудника, а модель машинного обучения оценивает движения обвальщика (у заказчика есть нормативы, в которых прописано необходимое количество движений и время для выполнения той или иной операции). Затем система формирует детальный отчет: сколько раз работник выполнил ту или иную операцию, сколько времени заняла каждая из них.

 

На основе полученных данных заказчик планирует поощрять эффективных сотрудников.

Выводы

Видеоаналитика вкупе с компьютерным зрением позволяет «закрыть» задачи, которые до этого решить было невозможно или очень дорого. Удешевление видеокамер, а также стремительный прогресс в области машинного обучения открывают новые возможности для использования технологии

Следите за нашими обновлениями

Спасибо!
Ваш материал отправлен.
Мы с вами свяжемся
Предложить
авторский материал
Спасибо!
Вы подписались на обновления наших статей
Подписаться
на рубрику
Спасибо!
Ваша заявка отправлена.
Мы с вами скоро свяжемся.
Оформить
подписку на журнал
Спасибо!
Вы подписались на наши новости.
Оформить
подписку на Новости
Ваш комментарий отправлен.
После прохождения модерации комментарий будет опубликован на сайте.
Оставить
комментарий
Спасибо!
Ваша заявка отправлена.
Мы с вами скоро свяжемся.
Задать вопрос
редактору

Оставить заявку

Мы всегда рады ответить на любые Ваши вопросы

* Обязательные поля для заполнения

Спасибо!

Благодарим за обращение. Ваша заявка принята

Наш специалист свяжется с Вами в течение рабочего дня