© 1995-2022 Компания «Инфосистемы Джет»
Шерлок против Big Data
Системы управления ИТ Системы управления ИТ

Шерлок Холмс: Но я-то не каждый, Ватсон, поймите: человеческий мозг — это пустой чердак, куда можно набить всё, что угодно.

Главная>Системы управления ИТ>Шерлок против Big Data

13.01.2015

Посетителей: 48

Просмотров: 39

Время просмотра: 2.3

Авторы

Автор
Алексей Николаев В прошлом - руководитель департамента систем управления компании «Инфосистемы Джет»
Современный мир становится все сложнее, в том числе растут сложность информационных технологий и зависимость бизнеса от них. Это касается и эксплуатации современных распределенных многокомпонентных систем – она требует анализа больших объемов информации за короткое время.

 

 

Шерлок Холмс: Но я-то не каждый, Ватсон, поймите: человеческий мозг — это пустой чердак, куда можно набить всё, что угодно. Человек тащит туда нужное и ненужное. И наконец наступает момент, когда самую необходимую вещь туда уже не запихнёшь. Или она запрятана так далеко, что ее не достанешь. Я же делаю всё по-другому. В моём чердаке только необходимые мне инструменты. Их много, но они в идеальном порядке и всегда под рукой. А лишнего хлама мне не нужно.

 

Художественный фильм «Шерлок Холмс и доктор Ватсон»

 

Допустим, мы определили проблему доступности приложения на стороне пользователя. При этом все контролируемые инфраструктурные метрики в норме. Как решить задачу обнаружения корневой причины недоступности? Типичный сценарий – подключение одного или нескольких экспертов, осуществляющих поиск причины вручную, методом анализа предыдущей практики, журнальных файлов, моделирования ситуации и пр.

 

Классические средства мониторинга вряд ли помогут на этом этапе – собираемые ими данные ограничены, фрагментарны. Обычно на мониторинг ставятся компоненты ИТ-систем, выход из строя которых можно предположить заранее: мы не можем контролировать все возможные аспекты работы приложения, поскольку ограничены возможностями вычислительной платформы и объемом хранимых данных. Кроме того, у классических систем ограничены функции корреляции собираемой информации. Полнофункциональные детальные сервисно-ресурсные модели, которые необходимы для анализа данных мониторинга, крайне сложны в сопровождении и часто не используются.

Следствием всего этого является потеря времени на поиск причин проблем, на анализ и сопоставление дополнительной информации. Но не все так плохо – развитие, появление новых технологий не только усложняет жизнь системам, но и обогащает их новыми инструментами. В нашей статье мы хотим сосредоточиться на одном из подобных примеров – применении методов работы с Большими Данными в средствах мониторинга ИТ.

 

Для начала необходимо определиться с терминами. С появлением технологии анализа Big Data в жизнь профессионального сообщества вошло новое понятие – Operations Intelligence (OI). Это класс аналитических решений, обеспечивающих комплексную обработку и визуализацию данных (значений параметров, потоков событий, бизнес-операций) из различных источников в режиме, близком к реальному времени.

 

Основные характеристики OI-систем:

  • мониторинг, обнаружение событий и визуализация информации в режиме, близком к реальному времени;
  • многомерный анализ данных: выявление корневых причин; анализ временных рядов и прогнозирование;
  • использование технологий анализа Big Data.

 

Системы OI многокомпонентны: за рамками нашей статьи останутся обработка сложных событий (Complex Event Processing), мониторинг бизнес-операций (Business Activity Monitoring) и др. Сосредоточимся на основных технологических решениях, обеспечивающих совместный оперативный анализ данных различных типов (временные ряды, текстовые события и т.д.). Специализированных игроков на данном рынке пока немного – это слишком молодая технология, требующая достаточно больших вложений в ее разработку и развитие. В качестве примера можно назвать решения, предлагаемые компаниями Splunk, Hewlett-Packard, IBM. Их общая черта – применение компонентов анализа Big Data в мониторинге ИТ.

 

Отметим, что решения класса IT Operations Analytics не являются заменой оперативных средств мониторинга, сообщающих нам о явных и конкретных сбоях. Их место – над этими системами. Они являются инструментом аналитика, работающего с проблемами, но могут применяться и в операционном мониторинге.

 

Как уже было сказано, с момента создания систем мониторинга как класса программных решений и вплоть до сегодняшнего дня мы жили в условиях ограничения вычислительной мощности используемых платформ. Для оперативного мониторинга выбирались только те данные, влияние которых на целевую функцию контролируемой системы было понятно и известно. Попытки сбора и обработки всей доступной информации приводили к существенному увеличению времени анализа, т.е. фактически переводили систему в раздел offline-аналитики, а это, в свою очередь, нивелировало смысл её создания. В итоге мы получали ограниченное решение, позволяющее выявить и, возможно, отранжировать по значимости потенциальные причины возникновения проблем. Далее был необходим глубокий ручной анализ журнальных файлов, сочетания нетипичных показателей и др.

 

Итак, что же изменилось? Ряд разработчиков, исторически или унаследованно занимавшихся технологиями анализа и обработки, обратили внимание на схожесть задач мониторинга и анализа Big Data (разные данные, большие объемы, требования к скорости). В результате были созданы системы нового типа – IT Operations Analytics. В качестве примера рассмотрим решение от компании Hewlett-Packard. Его основой являются два технологических компонента компании HP – аналитическая база данных HP Vertica и ПО управления журналами HP ArcSight. Обобщенная архитектура решения представлена на рис. 1.

 

Рис. 1. Архитектура системы HP Operations Analytics

 

Состав решения:

  • OpsAnalytics Collector, обеспечивающий сбор данных из различных источников. 
    В их роли выступают:
    1. файлы CSV;
    2. ПО мониторинга компании HP: HP SiteScope, HP Operations Manager и OMi, HP BPM и др.;
    3. средства мониторинга журнальных файлов: HP Arc-Sight Logger (входящий в состав решения) и Splunk;
  • HP ArcSight Logger, отвечающий за анализ журнальных файлов по различным принципам и предоставление структурированной информации в OpsAnalytics Collector (результаты мониторинга), а также, по запросу, серверу OpsAnalytics Server (в «сыром» виде при выполнении пользователями системы соответствующих поисков);
  • HP Vertica Datawarehouse – БД, обеспечивающая долговременное хранение данных в виде, адаптированном к выполнению аналитических запросов различного типа. Стоит отметить, что эти данные сжаты, в результате чего обеспечивается ощутимая экономия дискового пространства по сравнению с традиционными базами данных;
  • OpsAnalytics Server – модуль, отвечающий за предоставление функций HP Operations Analytics пользователям системы.

 

В соответствии с объемом предполагаемой к обработке информации компоненты решения могут масштабироваться на несколько узлов: новые могут быть добавлены по мере роста объема данных и количества выполняемых аналитических запросов.

 

Предоставляемый функционал включает в себя несколько основных блоков: поиск информации по различным критериям, визуальную и прогнозную аналитику, а также анализ журнальных файлов.

 

Визуально интерфейс пользователя представляет собой настраиваемый под конкретные задачи портал. Он может формировать состав представлений в процессе выполнения анализа и сохранять их для последующей работы. Одной из интересных особенностей решения является наличие так называемой «машины времени» (Time maсhine). С ее помощью можно оперативно получать требуемую информацию за заданный период времени без необходимости выполнения последовательных выборок для каждого блока данных. «Машина времени» примененяется одновременно для всех выводимых на экран метрик и событий. Наличие подобной функции позволяет «на лету» выполнять совместный анализ необходимых данных.

 

Рис. 2. Интерфейс системы

 

В системе реализован поиск по различным контекстам. Например, можно одновременно выполнять выборки по большому количеству критериев: по приложению (с учётом топологии, полученной из внешних источников), серверу, географическому положению элементов инфраструктуры и т.д. Например, можно находить причины проблем в работе банкоматов за счет совместного анализа данных об их доступности, о работе сети передачи данных и изменениях погоды.

 

На основе метрик, собранных в базе данных HP Vertica Datawarehouse строятся прогнозы изменения их значений и визуализируются отклонения от нормальных значений за заданный период (baseline).

 

Возможности модуля HP ArcSight Logger по анализу журнальных файлов достаточно хорошо известны. Ключевой особенностью его применения в составе HP Operations Analytics является превращение неструктурированных или слабоструктурированных данных в измеряемые метрики, доступные для совместного анализа с метриками доступности и производительности.

 

Отметим, что с точки зрения «чистых» функций (поиск, прогнозирование, визуализация сводной информации) система не несет в себе ничего нового. Все эти задачи так или иначе решаются в большинстве классических средств мониторинга. Ключевые отличия систем, вобравших в себя опыт работы с Большими Данными, – возможность хранения огромного количества данных и высокая скорость выполнения аналитических запросов. Ранее анализ работы распределенного приложения занимал часы и дни, был связан с обработкой десятков тысяч событий и записей в журналах, значений сотен метрик. Теперь – с использованием технологий анализа Big Data – эти операции можно выполнять практически в реальном времени.

Уведомления об обновлении тем – в вашей почте

Виртуальные ленточные библиотеки. Мифы и реальность

Современные системы хранения данных (СХД) обеспечивают исключительно высокий уровень надежности хранения благодаря отказоустойчивой архитектуре оборудования, включающей в себя дублирование компонентов, поддержку механизмов RAID и т.д., а также за счет применения средств создания копий данных, моментальных снимков (snapshot) и репликации.

Статический анализ кода: что могут инструментальные средства?

Автоматизация и интернет-технологии все больше захватывают сферы бизнеса, перестают быть его конкурентным преимуществом и переходят в статус необходимых для его функционирования элементов

Внедрение платформы управления рабочими местами в компании Aspen Re

Рассмотрим на примере одного из внедрений системы Altiris Client Management Suite (ACMS), какие бизнес-задачи можно решить с помощью систем управления компьютерами пользователей, и какие преимущества они предоставляют заказчикам. Речь идет о компании Aspen Re - крупном игроке на рынке страхования имущества и ответственности, морского и авиационного страхования и перестрахования рисков.

EMC Greenplum Database - основа платформы аналитики предприятия

СУБД Greenplum - один из лидеров в отрасли специализированных СУБД для систем хранилищ данных и аналитики. Российский и зарубежный опыт показывает, что объем данных увеличивается в среднем в 1,5 - 2,5 раза в год. Greenplum позволяет справиться с этим экспоненциальным ростом.

Новые горизонты систем мониторинга

На сегодняшний день большинство компаний в России, использующих ИТ-технологии в своей работе, применяет сервисный подход к управлению ИТ-инфраструктурой и прикладными системами.

Решения Hewlett Packard для защиты информацион ных систем

Современные компании все шире внедряют корпоративные информационные системы (КИС) в свою деятельность. Это позволяет повысить эффективность деятельности за счет использования более оперативной и полной информации внутри компании, а также ...

Эволюция интеграции данных от компании Informatica

Любая компания – это живой организм, поэтому она проходит в своем развитии несколько этапов: от детства до зрелости.

«Компания потеряла 50 млн рублей, потому что 4 часа не могла найти причину проблемы»

Почему подход к мониторингу ИТ-инфраструктуры начал меняться? Какую роль в этом играют Open Source, базы данных и машинное обучение? Почему современные системы мониторинга — это решения Business Critical?

Цифровые недра, или ИТ–инфраструктуру 2025 года пора планировать уже сейчас. Часть 2

Литературный образ цифровых недр хорошо описывает те изменения, которые происходят на планете в ходе цифровой революции

Спасибо!
Вы подписались на обновления наших статей
Предложить
авторский материал





    Спасибо!
    Вы подписались на обновления наших статей
    Подписаться
    на тему







      Спасибо!
      Вы подписались на обновления наших статей
      Оформить
      подписку на журнал







        Спасибо!
        Вы подписались на обновления наших статей
        Оформить
        подписку на новости







          Спасибо!
          Вы подписались на обновления наших статей
          Задать вопрос
          редактору








            Оставить заявку

            Мы всегда рады ответить на любые Ваши вопросы

            * Обязательные поля для заполнения

            Спасибо!

            Благодарим за обращение. Ваша заявка принята

            Наш специалист свяжется с Вами в течение рабочего дня