ИТ-портал компании «Инфосистемы Джет»

Обеспечение защиты сервисов ДБО Банка Москвы от мошенничества

Обеспечение защиты сервисов ДБО Банка Москвы от мошенничества

Банк Москвы и компания «Инфосистемы Джет» запустили в работу систему борьбы с мошенничеством в каналах дистанционного банковского обслуживания (ДБО) юридических лиц.

«Объем финансовых потоков со стороны юридических лиц, проходящих через систему ДБО банка, в 2014 г. превысил 30 тыс. платежей в сутки. При этом в пиковые часы она обрабатывает более 100 транзакций в секунду, – рассказывает о предпосылках проекта Василий Окулесский, начальник управления информационной безопасности Департамента по обеспечению безопасности Банка Москвы. – Общее число операций, требующих контроля, чрезвычайно сжатые сроки их анализа, необходимость свести к минимуму влияние человеческого фактора на его результат, а также скорость, с которой мошенники изменяют способы своей деятельности, поставили для нас внедрение системы управления рисками, обладающей возможностями самообучения в реальном времени, в ряд задач, критически важных для бизнеса».

Эксперты компании «Инфосистемы Джет» провели аудит ИТ-инфраструктуры банка, задействованной в эксплуатации и контроле системы ДБО, проанализировали существующие процессы борьбы с мошенничеством, данные финансовых операций и статистику по выявленным фактам мошеннических действий. На основе полученной информации были сформированы функциональные и архитектурные требования к системе по борьбе с мошенничеством. Далее она была интегрирована в инфраструктуру банка и подключена к ключевым системам (ДБО и АБС) с полным сохранением показателей их надежности и производительности. Для системы ДБО были настроены правила сбора данных о пользовательской среде и операциях пользователей, получения результатов фрод-анализа и сценарии реагирования на них.

За счет технологических возможностей внедренного решения локальная система защиты банка подключена к глобальной базе данных о мошеннических операциях, накапливаемой десятками международных организаций в режиме real-time. Анализу подвергаются все типы переводов, а также основные операции, совершаемые в рамках сервисов ДБО юридических лиц.

«Ключевой этап внедрения – опытная эксплуатация. На данном этапе проектная команда обеспечивала «обучение» математической модели выявления мошенничества, профилирование и накопление исторических данных. Реализованная математическая модель позволяет выявлять высокорисковые операции исходя из общих критериев действий злоумышленника и на основании всей зафиксированной ранее активности при попытке реализации хищений», – поясняет Алексей Сизов, руководитель направления по борьбе с мошенничеством Центра информационной безопасности компании «Инфо-системы Джет».

В результате внедрения в 5 раз сокращены операционные расходы бизнес-подразделений банка на выявление и противодействие мошенническим операциям. Самообучаемая система адаптируется к новым и изменяющимся схемам мошенничества и в автоматическом режиме выявляет и блокирует не менее 99,79% высокорисковых транзакций

В результате внедрения в 5 раз сокращены операционные расходы бизнес-подразделений банка на выявление и противодействие мошенническим операциям. Самообучаемая система адаптируется к новым и изменяющимся схемам мошенничества и в автоматическом режиме выявляет и блокирует не менее 99,79% высокорисковых транзакций. Число транзакций, требующих анализа в ручном режиме, снижено в 5 раз.

Технические подробности

Ядро системы в режиме реального времени оценивает активность внешних пользователей, отслеживая свыше 100 индикаторов факта мошенничества. Механизм оценки состоит в присвоении уникального балла риска каждому действию пользователя, основанного на комбинации оценки его недавнего поведения, накопленных за длительный промежуток времени данных и степени риска операции, назначаемой аналитиком вручную. За счет этого обеспечивается эффективность борьбы с MITM-атаками и троянами, реализующими атаки «Man-in-the-Browser». При расчете балла риска используется принцип байесовской сети: новые схемы атак выявляются на основании небольшого числа мошеннических операций. Параметры байесовской сети ежедневно пересчитываются. Это позволяет поддерживать модель риска в актуальном состоянии.

Выявленные операции с высоким баллом риска регистрируются и анализируются в специализированной подсистеме, работающей в режиме реального времени. Полученные результаты возвращаются в ядро системы, которое автоматически ставит на учет подтвержденную мошенническую схему или, получив доказательства законности операции, выполняет самонастройку для работы с такими операциями в будущем.

Еще одним элементом системы является база данных, предназначенная для распространения и совместного использования информации о деятельности мошенников всеми ее пользователями. Сведения о мошенничествах поступают в базу данных в режиме реального времени.

Вернуться к списку статей
Оставьте комментарий
Мы не публикуем комментарии: не содержащие полезной информации или слишком краткие; написанные ПРОПИСНЫМИ буквами; содержащие ненормативную лексику или оскорбления.
О журнале

Журнал Jet Info регулярно издается с 1995 года.

Узнать больше »
Подписаться на Jet Info

Хотите узнавать о новых номерах.

Заполните форму »
Контакты

Тел: +7 (495) 411-76-01
Email: journal@jet.su