ИТ-портал компании «Инфосистемы Джет»

Что дает ретейлу машинное обучение

Что дает ретейлу машинное обучение

У ретейла много клиентов: покупающих часто или зашедших случайно, тех, кому меньше 20 и больше 40, работающих учителями и адвокатами. И попытки описать их двумя-тремя бизнес-правилами приводят к ошибкам. Например, можно упустить клиентку, ежемесячно тратящую значительную сумму, просто потому, что она молода и не вписалась в правила. Если клиент из маленького города покупает регулярнее и на большую сумму, чем покупатель из Петербурга, то он более важен для компании.

Поэтому ретейлеры стремятся увеличить точность сегментации, но это также означает усложнение модели. И здесь помогает машинное обучение (ML): оно повышает точность прогнозов и позволяет ответить на насущные вопросы.

 

1. Что купит клиент?

Клиентов часто теряют, когда в магазине нет нужного товара. Например, женщина каждый месяц покупает крем за 10 тысяч рублей, и у нее рядом с домом два магазина косметики. В одном крема часто нет, во втором – есть. Скорее всего, она пойдет во второй, даже если там дороже, просто чтобы не тратить время.

2. Как оптимизировать работу персонала?

Несложный пример — планирование рабочих смен для кассиров и продавцов-консультантов.

Один путь — статистический анализ. Аналитик смотрит на поведение клиентов в зависимости от дня недели и видит, что в субботу покупают больше всего, а в пятницу и в воскресенье чуть меньше. После проверки статистическими тестами достоверность этой гипотезы подтверждается, выводы передают бизнесу для составления расписания персонала.

А если рассмотреть вариант, когда 7 марта приходится на среду? Купят ли в день перед женским праздником меньше, чем в пятницу 9 марта? А выпускные? Или местные праздники? Тут много факторов, которые нельзя объять простыми правилами. Вместо того чтобы усложнять правила и вводить исключения, можно построить модель, которая сделает прогноз для потока клиентов на конкретный день.

 

В течение «типичного месяца» нет праздников, поэтому распределение по неделям очень схоже. Но в феврале или марте мы бы увидели, как это распределение изменяется при приближении 23 февраля и 8 марта под влиянием дополнительных факторов.

ML помогает в самых разных случаях. Ниже мы рассмотрим кейс, который реализовали для одного из крупнейших ретейлеров России. Мы построили 2 модели и сделали прогноз, кто из клиентов придет в магазины в ближайшие две недели и что купит.

Для создания моделей были взяты данные за несколько лет:

·        по чекам: кому принадлежит бонусная карта из чека, когда сделана покупка, что купили, какова была скидка, покупка это или возврат;

·        по людям: регион и город, дата рождения и пол, согласия на рассылки по телефону или по почте;

·        по товарам: к какой категории или сегменту они принадлежат, область применения и т.д.

Мы убрали шум из данных (карты продавцов, возвраты, покупки услуг, а не товаров) и посчитали нужное (процент скидки, возраст). Дальше мы могли бы долго и утомительно описывать агрегацию данных для моделей, но не думаем, что это важно. Гораздо интереснее результат. Первая модель предсказала треть покупателей, которые придут в ближайшие 2 недели. Вторая выдавала рекомендации: товары, которые человек купит, причем вместе с артикулами. В итоге 30% клиентов приобрели хотя бы один товар из спрогнозированных моделью.

После очистки данных мы знали самый большой и самый маленький чек у каждого покупателя, среднюю, медианную и максимальную скидку, сколько раз он приходил и сколько товаров из каких категорий покупал. Эти параметры пересчитали на промежутки: последняя неделя, 2 недели, месяц, 3 месяца. Такая скрупулезная работа позволила построить модели с высокой точностью прогнозирования.

Благодаря нашим разработкам сеть узнала клиентов в лицо и теперь может прогнозировать продажи на будущее: ретейлер знает, кто придет к нему в ближайшее время и что купит. Например, если конкретный клиент традиционно ничего не покупает зимой, то не нужно отправлять ему дорогостоящее SMS в январе. Модели также оптимизируют рассылки: человек, отвечающий за них, смотрит на прогноз и сразу понимает, кому послать e-mail, а кому срочное SMS.

Конечно, не обошлось без подводных камней. Например, в ходе проекта мы также определяли влияние рассылок с товарной рекомендацией — проверяли, приводят ли напоминания клиентам о товарах к покупкам. Для этого предсказанный сегмент покупателей разделили на 3 группы:

1.      Контрольная — ничего не посылали.

2.      Группа с напоминаниями — посылали общий текст от магазина.

3.      Группа с рекомендациями — посылали SMS с конкретными товарами, предсказанными моделью.

После эксперимента мы проанализировали результаты и выяснили: люди, заранее получившие  рекомендации, покупали меньше, чем клиенты, не получавшие сообщений. Были меньше и средний чек, и количество приобретенных товаров. Сказать, что ситуация обескуражила, значит, не сказать ничего. Стали искать, в чем причина, и выяснили, что магазины отправляли клиентам сообщения в определенный мессенджер, а его пользователи в нашем сегменте изначально покупали меньше по сравнению с другими клиентами. Об этом не знали даже сами маркетологи ретейлера. Так что эксперимент получился нечистым, но по его итогу мы ввели в модель параметр «пользователь мессенджера». Этот эпизод показывает, как тщательно нужно выбирать каналы для общения с клиентами.

Отсюда можно сделать 2 вывода:

Данных много не бывает.

Иногда взгляд аналитика со стороны даёт свежую идею.

Сегментация клиентов


Александра Царева, аналитик Дирекции по разработке и внедрению программного обеспечения компании «Инфосистемы Джет»:

Применение науки о данных позволяет обнаружить новые закономерности, которые были скрыты в доступной до этого информации. Хорошим примером служит сравнение групп клиентов через RFM-сегментацию (Recency Frequency Monetary) и сегментации с использованием алгоритмов ML.

RFM-сегментация основана на использовании трех основных показателей: давности последней покупки, частоты покупок за период в целом и суммы, потраченной клиентом. На основании этих данных выделяют основные группы: «транжиры», «лояльные клиенты», «почти потерянные клиенты» и т.п., которые позволяют маркетологам включать нужную целевую группу в определенную рассылку или делать предложения именно для этой группы.

Например, на основании RFM-сегментации мы можем выделить сегменты покупателей и представить их как точку в трехмерном пространстве (см. рис. 4).

 

Такая экспресс-визуализация позволяет нам представить, как среди всей массы клиентов распределяются различные группы, какая между ними пропорция в настоящий момент и как она изменилась в исторической перспективе.

Вернемся к нашим клиентам, представленным «на плоскости». Да, можно разделить их по доходу, который они приносят, чтобы включать в маркетинговые кампании самых доходных, но будет ли этого достаточно для эффективного планирования?

Алгоритм машинного обучения даже в этих весьма распространенных данных уже видит дополнительные возможности: проанализировав их, он разбивает клиентов на 3 группы. Можно провести более глубокий анализ и узнать, например, по каким причинам алгоритм относит покупателей к тем или иным категориям. Возможно, часть высокодоходных клиентов составляют стилисты, сопровождающие своих заказчиц на шоппинге и использующие свои скидочные карты, а некоторые могут активно делиться своей карточкой с другими — таким образом появляются показавшиеся алгоритму значимыми особенности в визитах покупателей. В любом случае найти ответы на эти вопросы можно, внимательно изучив данные и собрав дополнительную информацию о своих клиентах по результатам уже первого применения алгоритмов машинного обучения.

 

Посмотрим на распределение все тех же клиентов, которые были классифицированы с помощью RFM-характеристик, но теперь их профиль был дополнен новыми данными по полу, возрасту, особенностям покупательского поведения и др.

Само по себе изменение расположения точек на плоскости никакого нового знания не дает: это просто проекция, призванная максимально сохранить их положение. Но если сравнить, какие выводы делает алгоритм на основании дополнительных факторов, с распределением клиентов по уровню трат, становится понятно, что он заметил новые особенности.

Например, есть группа, которая охватывает как лучших клиентов, так и их «соседей», приносящих меньшую прибыль. Выделение причин, которые стоят за решением алгоритма, — вопрос для аналитика. Эта группа может включать клиентов, которые при дополнительном стимулировании покажут большую доходность. Или, напротив, вошедшие в эту группу клиенты с большей доходностью на самом деле не особо перспективны, и повышение доходности было случайным отклонением, — стимулировать их дополнительно бессмысленно. Эти и другие теории выдвигаются в кабинетах, но проверяются экспериментально: они позволяют узнавать больше о клиентах и развивать алгоритмы, помогающие найти неочевидные для человека взаимосвязи.

 

Планирование складов — прогнозирование продаж

Дальше у проекта возможны несколько вариантов развития. Например, можно прогнозировать покупки в конкретном магазине — модель будет показывать, что в нем купят в ближайшее время. Тогда администратор магазина сможет вовремя заказать со склада нужный товар.

Анализ покупок в конкретной торговой точке поможет сформировать выкладку товаров. Так, если в магазин приходит много покупателей-мужчин, отдел с мужской продукцией не стоит размещать в дальнем углу.

Нельзя забывать о каннибализации магазинов. Если две точки продаж одной сети находятся рядом, одна может оттягивать поток клиентов на себя, а второй магазин будет простаивать. Можно построить модель, которая будет отслеживать подобные явления и сигнализировать об этом. И эту ситуацию можно будет легко предотвратить — принять меры.

***

Машинное обучение — мощный инструмент, который может многое: от прогнозирования потока клиентов до отслеживания каннибализации магазинов. Но это невозможно сделать без данных и за несколько дней, иначе мы получим модель, «состряпанную на коленке». Часто при построении моделей выявляются неочевидные закономерности, которые не знали даже бизнес-пользователи. За построением качественного анализа данных всегда стоит целая команда специалистов – аналитиков Data Science, тестировщиков, Data-инженеров и многих других. Именно их опыт, внимательность и нацеленность на результат гарантируют вам качественный прогноз.

Вернуться к списку статей
Оставьте комментарий
Мы не публикуем комментарии: не содержащие полезной информации или слишком краткие; написанные ПРОПИСНЫМИ буквами; содержащие ненормативную лексику или оскорбления.
О журнале

Журнал Jet Info регулярно издается с 1995 года.

Узнать больше »
Подписаться на Jet Info

Хотите узнавать о новых номерах.

Заполните форму »
Контакты

Тел: +7 (495) 411-76-01
Email: journal@jet.su